If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-35=0
a = 4; b = 20; c = -35;
Δ = b2-4ac
Δ = 202-4·4·(-35)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{15}}{2*4}=\frac{-20-8\sqrt{15}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{15}}{2*4}=\frac{-20+8\sqrt{15}}{8} $
| -6y+6=2y+4 | | x-66+x=40 | | g-5=4.13 | | -9(a+5)=-72 | | 68=3+5p | | b-1/6=1/6 | | 2(4-x)=3x-7 | | 2)3(x–9)=30 | | -1(4b+1)=-57 | | -125=8(2a-7)+7a | | 2=x–6.5 | | 10+6=13x-2 | | 145x60/15=x | | 400=50x+25 | | 3x-5(x-2=-4+2x-18 | | 1/7g=3/4 | | 4x+14=64 | | -r=14.63 | | 17x+18=24x–3 | | -4(6-6k)=6(6k+6) | | -2(3x+5)=-34 | | 64=4x+14 | | 5(x-6)=10x+5 | | 48y-17= | | 1-3k=8 | | (5x-60)=(x+20 | | 2.2m+7=15 | | 6+54 b=109 | | 5y+7.5=10* | | -n=13.26 | | 128+4x=360 | | 31=7x–25 |